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Background and Definitions

We define a genetic map (hereafter map) to be a set of ordered distance between events

on a biopolymer, including but not limited to DNA. Such a map may have annotations on

the events themselves indicating additional information, such as the identity of the biopoly-

mer sequence at this location (hereafter tags). This data can be acquired in several ways.

Initially biologists measured linkage disequilibrium between different phenotypic or geno-

typic variants by breeding many individuals of a species and determined a physical distance

between sites based on the level of recombination between those sites as measured by the re-

sulting phenotypes. Other distance maps in genetics are ordered restriction digestion maps.

These may be constructed algorithmically from multiple co-restriction digestions along with

measuring the size of the resultant fragments via gel electrophoresis. Or they may be ac-

quired via direct optical detection of DNA fixed on a surface, labeled with fluorophores, and

restriction digested enzymatically as they are in the so called Optical Mapping system

that the company Opgen has pioneered [2][3]. A newer example of a genetic map technology

is an electronic DNA map generated by Nabsys Positional Sequencing technology. In

this technology, DNA bound with sequence-specific probe molecules is translocated

through a nanopore from which the blockade of electrical current is used to detect the DNA

and its probes.
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A single map may have sites corresponding to multiple different sequences. This hetero-

geneity could result from using a mixture of probe molecules, using a single probe molecule

that targets multiple sequences, a combination of these two, or other approaches. In the

case where a single map is produced using a mixture of probe molecules, these probes might

have a sufficiently different chemical makeup as to produce differentiable signal traces in the

Nabsys instrument. In this case, the genetic map would consist of a set of ordered distances

(intervals) between probe binding events (probe sites) as well as an annotation as to the

probable identity of identities of each probe site (tags).

Motivation

This type of information can be thought of as a relatively low resolution measurement of

DNA sequence where the highest possible resolution would be the entire DNA sequence. But

since several technologies available are able to create genetic maps in a fraction of the amount

of time and money that full sequencing can be done for it is often advantageous to work with

such data. Also with current sequencing technologies, long range information is not available

and therefore the final sequence data is segmented into small contiguous sequences. This is

due mostly to repeat regions in the genome longer than the read lengths that current high

throughput sequencing technologies can attain. These repeat regions create ambiguities in

how to put together the reads and therefore create discontinuities in the resulting assembly.

The technologies that create distance maps do not have this shortcoming as their “reads”

are far longer than the longest repeated sequence in the genome. These maps are useful

as supplementary data as a source of orthogonal information which can be combined with

sequencing data for a more complete and correct measurement of the genome[9][21][20]. It is

also possible to obtain the full sequence data via many mapping experiments with a library

of sequence specific probes and combining that data into single base resolution sequence

data.
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Goals

There are several common goals in dealing with genetic maps. The main goal is to

determine the true underlying distance map for whatever feature (most commonly sequence

specific) you are targeting over the entire genome. This is complicated by the fact that no

technology can isolate and measure DNA molecules of the length of chromosomes.

Because of this, the so-called shotgun method is used. This method entails fragmenting

several copies of the genome randomly and making measurements of these fragments. Be-

cause there were multiple copies of the genome to start with and the fragmentation is a

random process, some fragments will be overlapping measurements of the same locus in

the genome. Then by comparing measurements that overlap on one region of the genome but

extend in either direction these can be combined to grow the contiguous multi-measurement

further. This process is repeated until hopefully each chromosome is contained in a single

contiguous multi-measurement. From this multi-measurement errors in individual measure-

ments are reduced or eliminated based on averaging and voting over many measurements

to produce a very reliable consensus map.

First we concern ourselves with identifying homology between genetic maps. A pair of

maps might share homology for a number of reasons. First, a pair of maps might be ap-

proximate measurements of the same biopolymer, two biopolymers that are identical copies

of a source molecule, or two biopolymers that are copies (identical or approximate) of over-

lapping regions of a source molecule. In this last case, we say that these two measurements

(fragments) overlap.

In the case of approximate measurements with error, the error process is assumed to be

a source of random noise described by probability distributions. Nabsys electronic maps

have noise resulting from the random thermodynamic process of annealing probes to target,

variable molecular configuration (including velocity and brownian motion) during molecular

sensing, and variation in electronic signal. These sources of noise result in uncertainty

in interval sizing (positional error), missing probe sites (false negatives), erroneous

probe site detections (false positives), and uncertainty in probe site identity (tag call
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probabilities).

Here we are primarily concerned with the case of overlapping fragments as previously

defined. In the following sections we will briefly describe comparisons (in particular a

type of comparison called an alignment) of pairs of maps to determine if they share a

homologous overlapping region and if so exactly how they overlap. Then we will describe a

novel method for comparing multiple (> 2) overlapping maps at once. And finally we will

describe a novel De novo assembly strategy using these tools.

Pairwise Map Alignment

Thanks to Waterman and others, there exists a considerable literature on pairwise map

alignments.[19][6][16][9] They are similar to algorithms for pairwise sequence alignment orig-

inally by Needleman and Wunsch[10] and extended by Smith and Waterman.[14][5] These

algorithms construct an ordered set of matched pairs of events between the two input maps

such that a score function on the level of error admitted by the alignment is optimized

(maximized or minimized depending on scoring metric over all possible alignments). Since

this is all previous work not novel to our method we will simply refer the reader to appropri-

ate sources and provide one example. In the example below the horizontal lines represents

the two DNA fragments and the tick marks represent events. Here you can see the distance

between each tick represents the distance between each event. Further, the dotted lines

between ticks on the other strand represent the alignment of those probes. The ordered set

of pairs of probes aligned in the optimal alignment are the pairwise alignment between two

fragments. For notation we will denote vij as the jth event on map i.

Figure 1: Pairwise Map Alignment.

v0
0 1 2 3 4 5 6

v1

0 1 2 3 4 5 6
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Giving the ordered set of pairs for this alignment as

{{v02, v10}, {v03, v11}, {v04, v12}, {v05, v13}, {v06, v14}}

If the score of such an alignment meets certain statistical tests the maps are homologous.

In the case of shotgun assembly, when an alignment score passes these tests the two frag-

ments most likely arose from copies of overlapping regions of the source molecule. Also,

the aligned pairs of events in such an alignment are likely to represent measurements of the

same particular locus in the genome.

Later in this document it will become useful to diagram this alignment as a graph where

the events are vertices and an edge represents the fact that those two events have been

aligned. This seems rather trivial for the pairwise case but will become more complex later.

An example of this can be seen in Figure 2.

v00 v01 v02 v03 v04 v05 v06

v10 v11 v12 v13 v14 v15 v16

Figure 2: Pairwise Map Alignment: Graph Representation. Note that the distances between
events is not encoded in this representation. Because the alignment was based on that
information all we care about here is that resultant alignment.

Pairwise Alignment Errors

While representing the optimal scoring alignment, a pairwise alignment can have errors.

Generally speaking, then, we can define two kinds of errors in a pairwise alignment: missing

edges and extra edges. That is to say two events that should have been aligned as they

represent measurements of the same location in the genome but were not aligned and two

events that should not have been aligned because they represent two different locations in

the genome but were aligned. It is important to note that this second case may occur either

because the fragments themselves arose from different locations in the genome or when a

local error of aligning two events that because of positional error or false positives and false
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negatives appeared to be the same event under the tolerated error. The diagrams below

demonstrate some causes of alignment errors. Note that false positive measurements are

colored red here. And the false negatives are shown by an outline shaded red in the place

where the event should have occurred. In real data of course we do not know which probes

are false positives and if or where an event should have occurred so we are displaying this

information for demonstration purposes only. The error in the data must be modeled and

incorporated in a scoring system that minimizes these alignment errors [12][11]

v0
0 1 2 3 4 6 75

v1

0 1 2 3 4 5 6

Figure 3: Alignment errors. As you can see here, positional error along with a false positive
have created an alignment error. There is a missing alignment between v04 and v12 as well
as an erroneous edge between v05 and v12.

v0
0 1 2 3 4 5 6

v1

0 1 2 3 4 5

Figure 4: Alignment errors. Here we have the contrapositive to the previous example in
which positional error and a false negative combine to create an alignment error. We will
not show it but it is easy to imagine positional error alone creating a miss alignment (the
simplest example would be that two events that should have been aligned were not because
their positions were simply too distantly perturbed. The ”decision” to call 2 false positives
instead of aligning two poorly distance matching events depends on the scoring metric which
should be based on the relative error models of false positives/false negatives and positional
error.

Multiple Alignment

We shall describe the homology between a set of input maps with a multiple alignment.
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The purpose of a multiple alignment is to match input map events in sets that reflect the

target feature occurrences on the source molecule from which the inputs originated. In

structure, a multiple alignment is an ordered set of sets of probe sites. Each set (aligned

point) consists of at most one probe landing on each measurement map. Additionally,

each probe landing on each measurement map is present in at most one set. Finally, the

sets must obey the ordering principle: if events a, b, and c occur on the same input map

such that b lies after a and before c, and each of a, b, and c is in an aligned point, the

the aligned point containing b lies after the aligned point which contains a and before that

which contains c in the multiple alignment. Intuitively, each aligned point consists of those

events that ”match,” i.e. that are measurements of the same locus in the genome.

v0
0 1 2 3 4 5 6

v1
0 1 2 3 4 5

v2
0 1 2 3 4 5

v3
0 1 2 3 4 5 6

v4
0 1 2 3 4 5 6

v5
0 1 2 3 4 5 6

Figure 5: Multiple Map Alignment

In the case of Nabsys positional sequencing, multiple alignment is useful for creating a

more accurate and complete consensus map than is represented by individual fragment

measurements. Recall that fragments suffer from sizing errors, missing and erroneous probe

measurements, and uncertain tag calls. Error in interval sizing is corrected by averaging

the sizes of intervals between aligned sets of probes. Missing and erroneous probe site

errors are corrected by requiring confirmatory probe site measurements shared within sets
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in the multiple alignment. Tag calls are made with much higher confidence by taking the

probability weighted consensus of all aligned tag call information. In the these ways a

multiple alignment is far more useful than a pairwise alignment. Being able to average

more than two intervals further decreases positional error. In a pairwise alignment, when

there is an event that is not aligned to an event in the other map, it is unclear whether that

event is a false positive or there is a false negative in the other map at that approximate

location or if the probe it corresponds to has been perturbed by distance error further than

that which would have made the two align in the optimal alignment. And most importantly,

pairwise alignment errors which are very sensitive to measurement errors are corrected by

the multiple alignment improving the efficacy of the previous two statements even further.

Graph Conception of a Multiple Alignment

Recall the graph representation of pairwise alignments from figure 2. We will now ex-

tend this to a multiple alignment. The aligned points that make up a multiple alignment

are equivalence classes, such that every pair of events in such a set has the relation “are

homologous.” A graph can built representing these pairwise relations, wherein a vertex vij

represents the jth event on map i and the (undirected) edge (vij ,v
k
l ) represents that vij and

vkl are homologous with respect to the map of common origin. By way of notation, vij .m = i

and vij .e = j. Because, by definition, those events in a given aligned point are homologous

to one another and to no other events, each connected component in this graph is fully

connected and consists of the events in one aligned point.[4]

v02

v11

v50

v40

v20 v30

v03

v12

v51

v41

v21 v31

v04

v13

v52

v42

v22 v32

v05

v14

v53

v43

v23 v33

v06

v15

v54

v44

v24 v34

Figure 6: Multiple Map Alignment: Graph Representation. As you can see this results in
a series of clique subgraphs.
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Multiple Map Alignment as the Union of Pairwise Alignments

Let us call this multiple alignment graph G, consisting of a set of vertices V and a set of

edges E. We can, for each pair j and l, define Ejl = Elj = (u, v) in E such that u.m = j

and v.m = l. Since each pair of events (u, v) in E comes from exactly one pair of different

maps, the set of all Ejl is a partitioning of E. Ejl defines a pairwise alignment between

maps j and l, consisting of the pairs of homologous events between these two maps. That

Ejl is a partitioning of E is also to say that E is the union over all such pairwise alignments.

So one way to determine the perfect multiple alignment between a collection of maps is to

take the union of perfect pairwise alignments.

But as a result of the noise described above for the Nabsys technology, a given pairwise

alignment is rarely perfect. As a result of missing and erroneous probe site measurements,

however, it is not strictly intuitive what we even mean by a perfect alignment. Consider

two maps, x and y, with events x1...m and y1...n. Each event derives either from a genomic

site γ or from a false positive. In the latter case, the event is not homologous to an event

on any other map and a perfect pairwise alignment will not include this event in a matched

pair. In the former case, this event will be matched if and only if the other map has an

event deriving from γ. So the ordered set of aligned points in a perfect pairwise alignment

consists of one matched pair for each event in the intersection of true positives in the two

maps.

Modified-Karger’s Algorithm for Contradiction Separation

Suppose that we have performed pairwise alignments between all pairs of input maps.

Consider the set of edges E′ (and the graph G′ = V,E′) formed by taking the union of

these imperfect pairwise alignments. E′ differs from the perfect solution E in its missing

and extra edges. Most importantly, the extra edges mean that E′ has edges between what

would be separated components in E. (Additionally, some edges are missing within what

would be connected components in E. These missing edges are less of a concern under

the assumed coverage because it is very unlikely that enough edges might be missing to
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v0
0 1 2 3 4 5 6 7 8

v1
0 1 2 3 4 5 6

v2
0 1 2 3 4 5 6

v3
0 1 2 3 4 5 6 7 8

v4
0 1 2 3 4 5 6 7

v5
0 1 2 3 4 5 6 7 8

Figure 7: Multiple Map Alignment: An example. Here we see that several of our maps have
false negatives in them. The circled probes are the desired multiple alignment but it will
turn out that not all of the pairwise alignments agree with this.

v04

v32

v13

v22

v52 v42

v33 v05

v53

v23

v14

v06

v36

v43 v54

Figure 8: Multiple Map Alignment: Graph Representation. This example refers to the
alignments of the maps contained in figure 7. This alignment graph contains multiple
contradictions. Note that the vertices have been rearranged spatially for ease of viewing
the graph. The broken red lines indicate the edges that must be cut in order to obtain the
contradiction-free multiple alignment that best explains all of the pairwise alignments.

separate a connected component into two or more components.) In order to recover E as

best possible, we set about removing the extra edges from E′.

The extra edges in E′ have the property that they introduce contradictions. Let us

define a contradiction as a connected component in G′ that contains two or more different

vertices from the same map. This means that the multiple alignment implicit from G′
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currently counts two events on one measurement map as arising from a single event in the

underlying true map. This is always an error because each aligned point in our multiple

alignment should correspond to a particular event γ in the map of common origin and

it is impossible for two sites on the same map to be homologous to the same γ. One

important step towards fixing E′ is to separate these contradictory components into

non-contradictory ones.

v0
0 1

v1

0

v0
0 1

v2

0

v1
0

v2

0

Figure 9: An example of a contradictory set of pairwise alignments. Here v00 is aligned to
v10 which is aligned to v20 but in the alignment between maps 0 and 2 v01 is aligned to v20.
These are inconsistent assignments of homology and therefore a contradiction.

Under the presumption that most edges in E′ are correct, a natural way to fix these con-

tradictions is to find a min-cut such that no contradictions remain. We use a novel, modified

version of Karger’s Algorithm to find this min-cut. Karger’s Algorithm is a probabilistic

algorithm that finds the min-cut of a graph by finding strongly connected components and

then severing them from one another. These strongly connected components are discovered

by ”contracting” edges at random until only two nodes remain. To contract an edge is to

remove the edge and combine its end nodes into one node retaining all other edges therefore

allowing multiple edges between two nodes. The selected cut itself is the set of all edges

remaining when no further contraction is allowed. This process can of course fail to find the

min-cut. Consider for instance that the first edge contracted at random happens to be an

edge that is in the min cut. For this reason we must perform this succession of contractions

many times in parallel and selecting the minimum cut among these iterations, the algorithm
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offers high probability of finding the min-cut. Because strongly connected components con-

tain far more edges than other areas of the graph, these areas get contracted earlier with

higher probability. This convenient property of highly connected components allows for

very high probability of finding the real min-cut with surprisingly few iterations. This run

time can be further improved by a modification known as the Karger-Stein algorithm. In

our case, we impose the additional constraint that no two vertices representing events on the

same map can be contracted. This constraint is natural because the fully-contracted vertices

at the end of Karger’s Algorithm are identical to the aligned points our multiple align-

ment seeks to recover. As such, our modified Karger’s Algorithm contracts edges at random

without violating constraints until no contractions are allowed under the constraints. The

min-cut selected by this modified Karger’s Algorithm represents a likely selection of the

extra edges in E′ and, in any case, results in an ordered set of non-contradictory connected

components that best explain the set of pairwise alignments.[8][7]

v00

v10

v20

v30

v40

v01 v11

v21 v31

v00

v10

v20

v30

v40

{v01, v31} v21

v00

Figure 10: Contraction on edge from v01 to v31

Karger’s Algorithm, along with our modifications, is uniquely suited to this problem. No

other formulation of the min-cut problem (network flow, etc.) can be so simply extended

with our constraints. The operation of Karger’s Algorithm consists of a probabilistic sam-

pling of the space of graph cuts. By introducing our constraints, we simple decline to

sample the portion of the space that contains contradictions. And, if this was not clear,

in the simple case in which E′ contains no contradictions to begin with we do nothing and

just take it as the multiple alignment.

De Novo Genetic Map Assembly: The Problem and Complexity
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De novo genetic map assembly is a problem several other groups have tackled[2][3][1][18][17]

but due to time complexity none of these easily extends to large mammalian genomes. The

exceptions to this are Opgen’s human mapping with help from a reference[15] and Maize

mapping with a cluster of servers using an iterative divide and conquer method[21] as well

as Opgen’s rice genome mapping done in the same manner. The reason for these difficulties

is that the algorithms that are the building blocks of assembly (pairwise alignment and

multiple alignment) have inherently higher complexity than their sequencing counterparts.

The well defined algorithm of pairwise alignment has O(n2) complexity for sequence align-

ment where n is the number of bases. In contrast, map alignment has complexity O(n4)

where n is the number of events. Furthermore, because sequencing error rates are initially

an averaging over many molecules, the resulting reads have relatively little error. This al-

lows assemblers to look at exact matches of certain lengths of sequences. Hashing reads by

these exact values allows for constant time lookups getting around the problem of aligning

entirely. In fact, all modern sequence assemblers all are based on this concept and many

employ little to no alignment. This is, for the most part, not possible with mapping as each

“read” is a single molecule measurement which is inherently relatively noise prone. We will

describe our method to utilize “exact matches” in the section titled Fragment Selection.

We include this for completion but, while unpublished, we do not believe this method to be

novel.

The size of a genetic map assembly problem is somewhat difficult to define. It is not simply

based on the size of the genome but also the frequency with which the sequence specific

target appears in that genome. Because this frequency can vary significantly, the number of

events is a much better proxy for the size of the problem than genome length is. In a random

genetic sequence of sufficient length all sequences of a particular length K occur with equal

probability. In a random sequence, a givenK-mer occurs as a poisson process with frequency

λ = 1
4K

and the intervals between these occurrences follow a geometric distribution with

µ = 4K . In non-random DNA such as real genomes the frequency of a given K-mer may

significantly different from the random model but still closely follows a poisson distribution
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with that particular frequency. The size of the genetic map assembly problem grows at least

linearly with the sequence specific target frequency. The optical mapping technology targets

sequences that occur at a frequency of once every 10,000 bases (λ = 1
10,000) or more. The

Nabsys positional sequencing technology attempts to gain greater resolution by targeting

sequences that occur once every 2,000-6,000 bases (λ = 1
2,000 to 1

6,000) thus creating a 2-5

fold larger computational problem. Error level including positional, false negatives, and

positives increase computational complexity in poorly defined ways. The reason for this is

that certain approximation optimizations in searching for fragments as well as in pairwise

alignment are sensitive to these errors [16]. We describe a method for genetic map assembly

that, under our error levels, can assemble a mammalian sized genome with event frequency

of one in 2,000 at 30 fold coverage in approximately one hour on a single core of a commodity

sandy bridge i7 processor with ≤ 8Gb of ram.

Fragment Selection: Signatures - A Discretized Geometric Hashing

In order to speed up the assembly process we wish to be able to efficiently search for

fragments that contain a short segment that is similar to a part of the growing consensus

map. This is similar to the short sequence hashing employed in the commonly used BLAST

algorithm. We define a signature as a ordered sequence of discretized interval lengths

between S events. We wish these “signatures” to be reliable by which we mean that we wish

them to be discretized to the same value as they would with no error. But we also wish to be

able to search for them with constant time look up. So we must average intervals to certain

chosen discrete values. The discretization of these intervals is designed to efficiently hash

fragments into collections of roughly equal size. To do this we make the approximation that

if we chose boundaries to our discrete values such that an equal number of intervals over the

entire data set fall in each then the distribution of number of ordered discretized intervals will

also be uniform. Under our simulations with reference genomes this approximation is close

to accurate. This method has performed better (created more uniformly sized signature

collections) in simulation than choosing discretization boundaries purely on a geometric
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size basis which Opgen employs (unpublished). It is worth noting that a false positive or

false negative will almost invariably make a signature incorrect while it is much less likely

for positional error to do so. There is a problem with interval sizes near the boundaries of

the range encompassed by a discrete value. These internals have a much higher probability

of being made incorrect by positional error than do intervals whose lengths fall in the center

of the range for a particular discrete value.

Nabsys Assembly

Assume we have a putative consensus map going back at least S events where S is a

parameter usually in the range 4-6. Make a further assumption that there is a collection

of fragments that overlap the putative consensus. We term this collection of fragments the

bundle. Our assembly proceeds as follows. If the bundle size is less than some number B

(usually 6-12), search for fragments to add to the bundle until it is of size B. If the bundle is

of sufficient size then do a multiple alignment on these fragments as previously described to

pick consensus events and their locations and add them to the growing consensus. When a

fragment in the bundle no longer has any forward overhang it is discarded from the bundle.

When searching for fragments to add to the bundle, we pick a signature, attempt to align

each fragment with that signature to the growing consensus. If that alignment score passes

a significance test then align the new fragment to each of the B fragments that currently

overlap the growing consensus. If each of these alignment scores passes significance tests

we add that fragment to the bundle. This process continues until we cannot find enough

fragments to fill the bundle that pass these significance tests. We run this process in both

direction for each contig. When one contig ends we start a new contig seeded with a

collection of extremely well aligning fragments. Sequence assemblers are built in such a way

that they expose the repetitious sequences and the ambiguous nature of the assembly at

those places. They do this with either an overlap graph or a DeBrujin Graph. Since our

assembly proceeds in a greedy manner we do not do this. Repetitions are not expected since

we require length of the overlap of a new fragment with the growing consensus to be greater
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than known exact or approximate repeat structures (15kb is sufficient for most prokaryotic

genomes while 45kb is necessary for mammalian and plant genomes). But we do not rely

on this fact alone. We identify possible repetitions and ambiguities either before or after

the assembly and cut contigs at these positions.[13][17]
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