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1 Introduction

We take as input a pre-determined set of balletic variants. We label alleles Ai,p where
i ∈ 1, ..., N indexes the variant, and p ∈ 0, 1 is an arbitrary label for the two alleles of the
variant.

The set of alleles that come from the same parent chromosome is referred to as a haplo-
type, and are arbitrarily labeled H0andH1. The goal of the phasing algorithm is to determine
which allele from each variant came from each parent chromosome. The phasing result can
be described by a ternary variable for each variant Xi ∈ 0, 1, 2 where Xi = 0 indicates the
Ai,0 ∈ H0 and Ai,1 ∈ H1 and Xi = 1 indicates that Ai,0 ∈ H1 and Ai,1 ∈ H0 and Xi = 2 indi-
cates that either Ai,0 ∈ H0, H1 or Ai,1 ∈ H0, H1 thus the variant is homozygous and the other
allele does not exist. It is by this third label that we filter variants that are false positive and
correct the genotype of homozygous variants that have falsely been called heterozygous.

Neighboring variants on the genome are often separated by distances longer than the
read-pair length, causing very short phase blocks. Long input fragments covering a small
fraction (0.001-0.0001) of the genome are exposed to each barcode, so the probability that a
barcode contains a molecule from both haplotypes is very small[5].

We case the solution to the phasing problem as a search for the maximum likelihood
phasing vector:

X̂ = argmax
X

P (O|X)

where O denotes the sets of barcoded reads observed, and X is the phasing result we wish
to infer.

Read pairs are aligned to the genome as usual. Reads are grouped by the attached
barcode sequences. Reads with a common barcode are partitioned into groups that are
likely to have originated from a single genomic input fragment, and thus provide evidence
that the alleles covered by the reads came from the same haplotype.

We compute the probability of the observed reads covering variant i from fragment f as:

logP (Oi,f |Ai,p) =
∑

r∈Oi,f

1(Xi 6= 2)(1(Sr = Ai,p)(1−10−Qr/10)+1(Sr 6= Ai,p)(10−Qr/10))+1(Xi = 2)(0.5)
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where r sums over reads, 1(Sr = Ai,p) is the indicator function testing if the rth sequence
Sr match allele Ai,p and 1(Xi = 2) is the indicator function testing if the assignment of the
ith variant is 2, also known as “not heterozygous”. The probability assigned is derived from
the inverse-Phred transformed quality value of relevant read base Qr.

The data from a fragment f come from one of three cases. First two cases are that
variants not assigned Xi = 2 have the property that alleles present are only from H0 or only
from H1. These cases are the typical case and have a high prior probability, governed by
the fraction of the genome present in each partition. The third case is that multiple input
DNA molecules covering the same locus from both haplotypes were present, so either allele
is equally likely to be observed:

P (Oi,f ...ON,f |X, Hf = 0) =
∏
i

1(Xi = 2)(0.5) + 1(Xi 6= 2)P (Oi,f |Ai,Xi
)

P (Oi,f ...ON,f |X, Hf = 1) =
∏
i

1(Xi = 2)(0.5) + 1(Xi 6= 2)P (Oi,f |Ai,1−Xi
)

P (Oi,f ...ON,f |X, Hf = M) =
∏
i

0.5

These equations give the probability of the observed reads from fragment f at variant
location i, Xi, and fragment haplotype Hf . Observations are independent given the variant
parity and fragment haplotype. The prior probability of the third case is α - the probability
that a partition contains input DNA molecules from both haplotypes at a locus. We can
compute the overall likelihood by summing over the three cases:

P (Oi,f |Xi) = (1−α)(P (Oi,f ...ON,f |X, Hf = 0)+P (Oi,f ...ON,f |X, Hf = 1))+αP (Oi,f ...ON,f |X, Hf = M)

Fragments are independent given the variant parity Xi letting us form the overall objec-
tive function as:

P (O|X) =
∏
f

P (Oi,f , ..., ON,f |X)

2 Optimization

We optimize the overall objective function using a hierarchical search of the phasing vector
X.

Initially we break up X into local chunks of n = 40 variants and determine the relative
phasing of the block using beam search of the assignments of Xk, Xk+1, ..., Xk+n. Where k
is the first variant in the local block. Beam search is a standard method that has existed for
a long time (see http://en.wikipedia.org/wiki/Beam search).

The relative phasing of neighboring blocks is found greedily, yielding a candidate phasing
vector X. Finally X is iteratively refined by swapping the phase of individual variants.
When refinement converges, we are left with our estimate of the optimal phasing configura-
tion X̂.
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3 QV Testing

W can compute estimates of the accuracy of the phasing configuration by computing the
likelihood ratio between the optimal configuration X̂ and some alternative configuration
Xalt. The confidence is then reported as a Phred-scaled quality value:

Q(Xalt) = −10 log10(
P (O|Xalt)

P (O|X̂)
)

where Xalt here is the sum of the alternative phasing and the alternative option of the variant
being not heterozygous (label 2).

There are two classes of errors we consider: short switch errors and long switch errors.
Short switch errors are single variants that are assigned the wrong phasing in an otherwise
correctly phased region - to measure the short switch confidence of variant i we flip Xi and
add Xi = 2 to form Xalt. If Xi is already label 2, we consider it versus the summation of
Xi = 0 +Xi = 1 as Xalt. If the short switch confidence is low, the variant is marked as not
phased in the output. If the short switch confidence is high for label 0 or 1, it is marked as
phased. And if the short switch confidence is high for label 2, we attempt do decide whether
the variant is more likely homozygous reference (false positive) in which case it is filtered,
or homozygous alt allele in which case the genotype is corrected.

Long switch errors occur when two neighboring blocks of variants ..., Xi−2, Xi−1 and
Xi, Xi+1, ... are correctly phased internally, but have the wrong relative phasing between the
two blocks. In this case we say a long switch error occurred at position i. We test this long
switch confidence at position i by inverting the phase of Xj for all i ≤ j if Xj 6= 2. When
the long switch confidence falls below a threshold we start a new phase block – variants in
different phase blocks are not called as phased with respect to one another[1].

4 Related Work

HAPCUT [cite], and HASH [cite] are two relevant pieces of prior art. In HASH, the authors
formulate a probabilistic objective similar to ours. Their algorithm uses single long Sanger
reads as the input fragments so they don’t need to consider the case that a fragment carries
data from both haplotypes.

HASH uses Markov-Chain Monte Carlo (MCMC) to explore the posterior distribution of
the phasing configuration, as opposed to the direct combinatorial optimization scheme we
use. HASH uses a graph partitioning scheme to select sets of variants that are well-connected
by by fragment data, and add MCMC moves that invert the phasing of the groups, allowing
the Markov chain to converge more quickly. Either optimization scheme should find a near-
optimal solution given enough run time. The MCMC approach is probably less efficient
because it randomly explores[3].

HAPCUT is a follow-up method by the same group which uses combinatorial algorithms
to optimize the minimum error correction (MEC) objective. It has very little in common
with our method. It appears that this method was developed as a much faster alternative
to the HASH method[2].
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As for variant filtering via phasing inconsistencies, complete genomics long fragment
read technology utilized a system by which they filtered all variants that had information by
which they could phase but were not confidently phased. The paper is somewhat unclear on
the method, but this is the best interpretation of these authors. Their method of phasing
was largely undocumented in the paper. This strategy is likely to filter many true variants
as well as false variants. And it is not addressing the case of homozygous alt variants
that were falsely called heterozygous. It will filter these variants instead of updating their
genotypes[4].
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